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Abstract

We have recently introduced a new language, called Opus, which provides a set of Fortran lan-
guage extensions that allow for integrated support of task and data parallelism. It also provides
shared data abstractions (SDAs) as a method for "ommunication and synchronization among
these tasks. In this paper, we first provide a brief description of the language features and then
focus on both the language-dependent and language-independent parts of the runtime system
that support the language. The language-independent portion of the runtime system supports
lightweight threads across multiple address spaces, and is built upon existing lightweight thread
and communication systems. The lafiguage-dependent portion of the runtime system supports
conditional invocation of SDA methods and distributed SDA argument handling.
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1 Introduction

Data parallel language extensions, such as High Performance Fortran (HPF) [193 and Vienna For-
tran [3], are adequate for expressing and exploiting the data parallelism in scientific codes. However,
there are a large numoer of scientific and engineering codes which exhibit multiple levels of par-
allelism. Multidisciplinary optimization (MDO) applications are a good example of such codes.
These applications, such as weather modeling and aircraft design, integrate codes from different
disciplines in a complex system in which the different discipline codes can execute concurrently,
interacting with each other only when they need to share data. In addition to this outer level of task
parallelism, the individual discipline codes often exhibit internal data parallelism. It is desirable
to have a single language which can exploit both task and data parallelism, providing control over
the communication and synchronization of the coarse-grain tasks.

We have recently designed a new language, called Opus, which extends HPF to provide the
support necessary for coordinating the parallel execution, communication, and synchronization of
such codes [4]. Along with extensions to manage independently executing tasks, we have introduced
a new mechanism, called Shared Data Abstractions (SDAs), which allows these tasks to share data
with each other. SDAs generalize Fortran 90 modules by including features from both objects in

object-oriented languages and monitors in shared memory languages. The result is a data structure
mechanism that provides a high-level, controlled interface for large grained parallel tasks to interact
with each other in a uniform manner.

In a previous paper [4], we introduced the Opus language syntax and semantics for specifying
task parallelism and their interaction with SDAs. In this paper, focus our attention on the runtime
system that supports these mechanisms. In particular, we describe both the language-dependent
and language-independent portions of the runtime system. The language-independent portion of
the runtime system is based on our lightweight threads package called Chant [17]. This provides
an interface for lightweight, user-level threads which have the capability of communication and
synchronization across separate address spaces. Chant extends lightweight thread and communica-
tion libraries to provide a simple, coherent, and efficient interface for using lightweight threads in
a distributed memory environment. Additionally, Chant supports a grouping of threads, called a
rope, which provides an indexed naming scheme for the set of global threads, as well as providing

a scope for global communication, synchronization, and reduction operations. Ropes can be used
to implement data parallelism. The language-dependent portion of the runtime system supports
conditional invocation of SDA methods and distributed SDA argument handling.

The remainder of the paper is organized as follows: Section 2 briefly outlines the Opus language;
Section 3 outlines the runtime support necessary for supporting the task and shared data abstraction
extensions in Opus; and Section 4 discusses related research.

2 The Opus Language

In Opus, a program is composed of a set of asynchronous, autonomous tasks that execute indepen-
dently of one another. These tasks may embody nested parallelism, for example, by executing a
data parallel HPF program. A set of tasks interact by creating an SDA object of an appropriate
type and making the object accessible to all tasks in the set. The SDA executes autonomously on
its own resources, and acts as a data repository. The tasks can access the data within an SDA
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object by invoking the associated SDA public methods, which execute asynchronously with respect
to the invoking task. However, the SDA semantics enforce exclusive access to the data for each call
to the SDA. This is done by ensuring that only one method of a particular SDA is active at any
given time. This combination of task and SDA concepts forms a powerful tool for hierarchically
structuring a complex body of parallel code.

We presume that High Performance Fortran (HPF) [19] is to be used to specify the data
parallelism in the codes. Thus, the set of extensions described here build on top of HPF and
concentrate on management of asynchronous tasks and their interaction through SDAs.

2.1 Task Management

Opus tasks are units of coarse-grain parallelism executing in their own address space. Tasks are
spawned by explicit activation of task programs (entities similar to HPF subroutines, where the
keyword TASK CODE replaces SUBROUTINE) using the spawn statement:

SPAWN task-code-name (arg, ...) ON resource-request

The semantics of the spawn statement are similar to that of a Unix fork in that the spawning
task continues execution past the spawn statement, independent (and potentially in parallel) of the

newly spawned task. A task terminates when its execution reaches the end of the associated task
program code, or is explicitly killed.

Tasks execute on a set of system resources specified by the resource request in the ON clause of
the spawn statement. The resource request consists of a processor specification, used to select a set
of processors for nested parallel execution of the task, and a machine specification, used to locate
the additional processor(s). Nested parallel execution of the task can occur as task parallelism,
by spawning other tasks, or as data parallelism, using HPF specifications. In the latter case, the
compiler will generate the appropriate SPMD code to be executed on the selected processors.

2.2 Shared Data Abstractions

Shared Data Abstractions (SDAs) allow independently executing tasks to interact with each other
in a controlled yet flexible manner. An SDA specification, modeled after the Fortran 90 module,
consists of a set of data structures and an associated set of methods (procedures) that manipulate
this data. The data and methods can be public or private, where public methods and data are

directly accessible to tasks which have access to an instance of the SDA type. Private SDA data
and methods can only be used by other data or methods within the SDA. In this respect, SDAs
and their methods are similar to C++ classes and class functions [9].

As stated before, access to SDA data is exclusive, thus ensuring that there are no conflicts due
to the asynchronous method calls. That is, only one method call associated with an SDA object
can be active at any time. Other requests are delayed and the calling task is blocked until the
currently executing method completes. In this respect, SDAs are similar to monitors.

Figure 1 presents a code fragment that specifies the SDA stack which can be used to commu-
nicate integers between tasks in a last-in-first-out manner. The SDA is comprised of two parts,
separated by the keyword CONTAINS. The first part consists of the internal data structures of
the SDA, which in this case have all been declared private, and thus cannot be directly accessed
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SDA TYPE stack (max)
INTEGER max
INTEGER lifo(max)
INTEGER count
PRIVATE lifo, count, max

CONTAINS
SUBROUTINE get (x) WHEN (count .gt. 0)

INTEGER x
x = lifo(count)
count = count - 1

end

SUBROUTINE put (x) WHEN (count .It. max)
INTEGER x
count = count + 1
lifo(count) = x

END

INTEGER FUNCTION cur-count
cur-count = count

END

END stack

Figure 1: Code fragment specifying the stack SDA

from outside the SDA. The second part consists of the procedure declarations which constitute the
methods associated with the SDA.

Each procedure declaration can have an optional condition clause using the keyword WHEN,
which "guards" the execution of the method, similar to Dijkstra's guarded commands [8]. The

condition clause consists of a logical expression, comprised of the internal data structures and the

arguments to the procedure. A method call is executed only if the associated condition clause is
true at the moment of evaluation, otherwise it is enqueued and executed when the condition clause

becomes true. For example, the put method can be executed only when count is less than maz and

the get method can be executed only when count is greater than zero.

Similar to HPF procedure declarations, each SDA type may have an optional resource request

directive, which allows the internal data structures of the SDA to be distributed across these

processors. This is useful (or perhaps necessary) for SDAs that comprise large data structures.

The dummy arguments of the SDA methods can also be distributed using the rules applicable to
HPF procedure arguments.

In this section, we have briefly described the main features of Opus; a more detailed description

of the language features, including SDA type parameterization and persistence, can be found in [4].
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Figure 2: Runtime layers supporting Opus

A more concrete example using the features of Opus to encode a simplified application for the
multidisciplinary design of an aircraft can also be found in [4].

3 Opus Runtime Support

As specified in the previous section, an Opus program is potentially constructed of three types of
parallel entities: parallel tasks, data parallel statements, and SDA method tasks. There are several
reasons for wanting to map several of these entities onto a single physical processor: to allow
for more parallel entities than physical processing elements; to increase locality of SDA data by
placing an SDA on the same processor as a parallel task or data parallel statement; or to minimize
the idle time for a processor by overlapping the execution of various parallel entities with blocking
instructions. To allow for parallel entities that are independent of the physical processing resources,
Opus employs the well known concept of a lightweight thread to represent its unit of parallelism
in all cases. Lightweight threads have several advantages over the traditional approach of using
operating system processes for representing parallel tasks: they contain only a minimal context to
allow for efficient support of fine-grain parallelism and latency-tolerance techniques; they provide
explicit control over scheduling decisions; and they provide the ability to execute tasks on parallel
systems that do not support a full operating system on each node [6, 27, 37]. One should note that
most of the current lightweight threads packages typically assume a single address space as their
execution environment. However, Opus requires underlying support for lightweight threads that
are capable of execution and communication in a distributed memory environment.

As depicted in Figure 2, the runtime system is divided into two essential layers: Opus Runtimne,
which provides support for task and SDA management, and Chant, which provides underlying sup-

port for lightweight threads in a distributed memory environment. Since Chant does not assume
any particular knowledge of the Opus language, we refer to this layer as the language-independent
layer, whereas Opus Runtime clearly represents the language-dependent layer. This layered ap-
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proach allows us to build on a large collection of existing runtime work in the areas of lightweight
threads and communication systems. In cooperation with other researchers in this field, we are in
the process of attempting to define a standard language-independent runtime interface (at the level
of Chant) for parallel languages, called PORTS. By using a modular design for the Opus runtime
system, we are in the position to take advantage of such a system when it emerges.

We now provide a description of both Chant and Opus Runtime, focusing on some of the basic
issues that must be addressed to obtain an efficient implementation of the language. Previous work
on Chant [17) and Opus Runtime [18] provides a more detailed description of these systems.

3.1 Chant

Despite their popularity and utility in uniprocessor and shared memory multiprocessor systems,
lightweight thread packages for distributed memory systems have received little attention. This
is unfortunate: in a distributed memory system, lightweight threads can overlap communication
with computation (latency tolerance) [10, 16]; they can emulate virtual processors [28]; and they
can permit dynamic scheduling and load balancing [5]. However, there is no widely accepted
implementation of a lightweight threads package that supports direct communication between two
threads, regardless of whether they exist in the same address space or not. Chant has been designed
to fill this need.

Chant extends the POSIX pthreads standard for lightweight threads [21] by adding a new object
called a chanter thread, which supports the functionality for both point-to-point and remote
service request communication paradigms, as well as remote thread operations. Point-to-point
communication primitives (i.e. send/receive) are required to support most existing explicit message
passing programs, including those generated by parallelizing compilers [20, 22, 38]. Remote service
request communication primitives are needed to support RPC-style communications [29, 34], as
well as client-server applications and get/put primitives. Remote thread operations are necessary to
support threads in a global environment, such as creating a thread on another processor. Ropes, also
based on chanter threads, are used for implementing parallel computations which are inherently
structured, such as SPMD data parallel codes. Ropes provide a an indexed naming scheme for the
threads, as well as a scope for global communication, reduction, and synchronization operations.

Chant is built as a layered system (as shown in Figure 2), where point-to-point communication
provides the basis for implementing remote service requests, which in turn provides the basis for
implementing global thread operations. Our design goals center on portability, based on existing
standards for lightweight threads and communication systems, and efficiency, based on supporting
point-to-point message passing without interrupts or extra message buffer copies.

3.1.1 Point-to-Point Communication

Point-to-point communication is characterized by the fact that both the sending thread and re-
ceiving thread agree that a message is to be transferred from the former to the latter. Although
there are various forms of send and receive primitives, their defining aspect is that both sides are
knowledgeable that the communication is to occur. As a result of this understanding, it is possible
to avoid costly interrupts and buffer copies by registering the receive with the operating system be-
fore the message actually arrives. This allows the operating system to place the incoming message
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in the proper memory location upon arrival, rather than making a local copy of the message in a

system buffer. Chant ensures that no message copies are incurred for point-to-point communication
that wouldn't otherwise be made by the underlying communication system, which is tantamount
to reasonable efficiency on low-latency/high-bandwidth machines.

To support message passing from one thread to another, Chant must provide solutions to the
problems of naming global threads within the context of an operating system entity (process),
delivering messages to threads within a process, and polling for outstanding messages.

To enable the use of the underlying thread package for all thread operations local to a given
processing element, a chanter thread is defined in relation to a particular processing element,
which in turn is composed of a process group identifier and a process rank within the group. The

group/rank paradigm can be matched to most parallel systems, and also corresponds directly to
the MPI standard for representing processing elements [11]. Therefore, a global Chant thread is
defined by a 3-tuple, composed of a group identifier, a rank within the group, and a local thread

identifier. The type of the local thread identifier is determined by the thread type of the underlying

thread package and, although this will vary for different thread packages, allows the global threads
to behave normally with respect to the underlying thread package for operations not concerned
with global threads.

Most communication systems support delivery to a particular context within a particular pro-

cessor, but do not provide direct support for naming entities within the context, namely a thread.
All message passing systems, however, support the notion of a message header, which is used by

the operating system as a signature for delivering messages to the proper location (process). Mes-

sages also contain a body, which contains the actual contents of the message. In order to ensure
proper delivery of messages to threads, and without having to make intermediate copies, the entire

global thread name (group, rank, thread) must appear in the message header. Some communication
systems, such as MPI, provide a mechanism by which thread names can easily be integrated into

the message header. MPI accomplishes this using the communicator (i.e. group) field. However,
for systems which do not provide support for message delivery to entities within a process, we

must overload one of the existing fields in the message header, typically the user-defined tag field.

This approach has the disadvantage of reducing the number of tags allowed, but the alternative

approach, placing the thread identifier in the message body, would force an intermediate thread to

receive all incoming messages, decode the body, and forward the remaining message to the proper
thread. In addition to being time consuming, this method would require the message body to be

copied for both sending (to insert the thread id) and receiving (to extract the thread id).
The problem of waiting for a message is solved by polling for incoming messages, either by the

operating system or user-level code. Operating system polls either block the entire processor while
the operating system spins and waits, or allows the process to continue execution and generates

an interrupt when a message arrives. Neither of these solutions are desirable, since blocking the
entire processor disables the opportunity to execute other (ready) threads, and interrupts are very

expensive, causing cache disruptions and mutual exclusion problems. Therefore, in Chant, message
polling does not involve the operating system and is done either by the thread which initiates the

receive request or by the scheduler. The thread-polls method has the advantage of not having to
register receive operations with the scheduler, and will work for any underlying thread package,

but will cause context switching overheads in the case when a thread is re-scheduled but cannot
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complete the receive operation. The scheduler-polls method requires all threads to register a receive
with the scheduler, and then are removed from the ready queue and placed on a blocking queue

until the message arrives. This avoids the overhead of scheduling a thread that is not really ready
to run, but forces the scheduler to poll for outstanding messages on each context switch, and may

not be supported by some lightweight thread libraries. An analysis of these policies is given in [17].
An initial implementation of the Chant point-to-point communication layer for the Intel Paragon

was found to introduce only a 6% overhead (on average) for a IK byte message when compared to the
same operations using Paragon processes [17]. These initial performance numbers are encouraging
as they demonstrate that thread-based communication introduce little overhead.

3.1.2 Remote Service Requests

Having established a mechanism by which lightweight threads located in different addressing spaces
can communicate using point-to-point mechanisms, we now address the problem of supporting
remote service requests, which builds on our design for point-to-point message passing. Remote

service request messages are distinguished from point-to-point messages in that the destination
thread is not expecting the message. Rather, the message details some request that the destination

thread is to perform on behalf of the source thread. The nature of the request can be anything, but
common examples include returning a value from a local addressing space that is wanted by a thread
in a different addressing space (remote fetch), executing a local function (remote procedure call),

and processing system requests necessary to keep global state up-to-date (coherence management).
Most remote service requests require some acknowledgment to be sent back to the requesting

thread, such as value of a remote fetch or the return value from a remote procedure call. To
minimize the amount of time the source thread remains blocked, we wish to process the remote
service request as soon as possible on the destination processor, but without having to interrupt a
computation thread prematurely. Interruptions are costly to execute and can disrupt the data and
code caches which, as processor states increase, will continue to have a detrimental effect on the
efficiency of a program [29]. Also, the MPI standard [11] does not support interrupt-driven message
passing, thus utilizing interrupts in a design would preclude the use of the MPI communications
layer. Therefore, we need a polling mechanism by which remote service requests can be checked
without having to prematurely interrupt a computation thread when such a request arrives.

Since the main problem with remote service requests is that they arrive at a processor unan-
nounced, we simply introduce a new thread, called the server thread, which is responsible for
receiving all remote service requests. Using one of the polling techniques outlined in Section 3.1.1,

the server thread repeatedly issues nonblocking receive requests for any remote service request

message, which can be distinguished from point-to-point messages by virtue of being sent to the
designated server thread rather than a computation thread. When a remote service request is
received, the server thread assumes a higher scheduling priority than the computation threads,
ensuring that it is scheduled at the next context switch point.

If the underlying architecture supports a low-latency remote service request mechanism, such as

Active Messages [34], in addition to the point-to-point primitives, then Chant would ideally shortcut
the remote service request mechanism just described to take advantage of these primitives.
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3.1.3 Remote Thread Operations

As well as adding communication primitives to a lightweight thread interface, Chant must support
the existing lightweight thread primitives that are inherited from the underlying thread package.
These primitives provide functionality for thread management, thread synchronization, thread
scheduling, thread-local data, and thread signal handling. We divide these primitives into two
groups: those affected by the addition of global thread identifiers in the system, and those not
affected. For example, the thread creation primitive must be capable of creating remote threads,
but the thread-local data primitives are only concerned with a particular local thread. Our goal
in designing Chant is to provide an integrated and seamless solution for both groups of primitives.
This is accomplished in two ways.

1. Since a global thread identifier contains a local thread id, it is possible to extract this iden-
tifier (using the pthread.chanter-thread primitive) and use it as an argument for thread
primitives concerned only with local threads, such as manipulating the thread-specific data
of a local thread.

2. Thread primitives that are affected by the global identifiers either take a thread identifier as
an argument (such as join) or return a thread identifier (such as create). In either case, the
primitive must handle the situation of a thread identifier that refers to a remote thread.

Having described the details of how Chant supports remote service requests, we can now utilize
this functionality in the form of a remote procedure call. Similar to the manner in which Unix
creates a process on a remote machine [35], Chant utilizes the server thread and the remote ser-
vice request mechanism to implement primitives which may require the cooperation of a remote

processing element.

3.1.4 Ropes

Threads represent task parallelism and the general concept of MIMD programming, where one
thread is created for each parallel task that is desired, and execution (c" the threads is indepen-
dent and asynchronous. However, data parallelism represents a particular specialization of MIMD

programming (often termed SPMD programming), in which all tasks execute the same code but
on separate data partitions. Therefore, what is required is a group of threads that captures this
behavior better than a collection of otherwise unrelated threadb. Specifically, a rope is defined as
a collection of threads, each executing the same code segment, and participating in certain global
communication and coordination operations, where the scope of these global operations is defined

as the threads within the rope. This allows for data parallel tasks to mix with unrelated tasks on
the same processor, yet restrict all global communication and synchronization operations to those
threads that are participating in the data parallel task.

Chant supports ropes by introducing a new object, called a rope, which corresponds to a
data parallel thread. In addition to the attributes of a global thread, a rope thread contains a
index relative to the threads within that rope so that all threads within a rope may refer to each
other using this index rather than the global thread identifier. This rope index naming scheme is
maintained using a local translation table on each processor, which translates a rope identifier and
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index into a global thread identifier. In addition, new primitives for collective communication and
reduction are available to rope threads.

3.2 Opus Runtime

In the last subsection, we presented Chant, the language-independent part of the runtime system.
We now describe the design of the runtime system required to support the features of Opus that
differ from HPF: tasks and SDAs. The two major issues in the Opus runtime system are the

management of the execution and interaction of tasks and SDAs. In the initial design, we have
concentrated on the interaction and have taken a simplified approach to resource management. We

presume that all the required resources are statically allocated and the appropriate code is invoked
where necessary. We will later extend the runtime system to support the dynamic acquisition of

new resources.
The interaction between tasks and SDAs requires runtime support for both method invocation

and method argument handling. These issues are explored in the following subsections.

3.2.1 SDA Method Invocation

The semantics of SDAs place two restrictions on method invocation:

1. each method invocation has exclusive access to the SDA data (i.e. only one method for a
given SDA instance can be active at any one time), and

2. execution of each method is guarded by a condition clause, which is an expression that must

evaluate to true before the method code can be executed.

We can view an SDA as being comprised of two components: a control structure, which executes

the SDA methods in accordance with the stated restrictions, and a set of SDA data structures.

At this point, our design only supports a centralized SDA control structure, represented by
a single master thread on a specified processor. All remaining SDA processors will host worker

threads, which take part in the method execution when instructed by the master thread. The first

restriction, mutually-exclusive access to the SDA, is guaranteed by the fact that the SDA control
structure is centralized. Allowing for distributed control of an SDA would require implementing
distributed mutual exclusion algorithms, such as [24], to guarantee the monitor-like semantics of

SDAs, and is a point of interest for future research.
Having established the master-worker organization of the SDA control structure, we can now

describe a simple mechanism for ensuring that the second restriction, conditional execution of

the methods, is enforced. When an SDA master thread receives a request to execute a method, its

condition function is first evaluated to see if the condition is true and, if not, the method is enqueued

and another request is handled. Whenever a condition function evaluates to true, the associated

method is invoked, after which the condition functions for any enqueued methods are examined
to see if their conditions have changed. Starvation is prevented by ensuring that any enqueued

method whose condition has changed, is processed before a new method request is handled.
Details of a prototype implementation of this method invocation mechanism, along with pre-

liminary experiments measuring the overhead of the method invocation design can be found in [18].
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PROGRAM main SDA TYPE SType
!HPF$ PROCESSORS P(M) !HPF$ PROCESSORS P(N)

SDA (SType) S
CONTAINS

INTEGER A(1000) SUBROUTINE put ( B)
!HPF$ DISTRIBUTE A(BLOCK) INTEGER B(:)

CALL S%put(A) END put

END main END SType

Figure 3: SDA code excerpt

Our initial experiments show that our design adds only a small amount of overhead to a raw RPC

call across a network of workstations.

3.2.2 SDA Method Argument Handling

Opus supports the exploitation of data parallelism within tasks. For example, an Opus task may

be an HPF code with the data structures distributed across a set of processors. On the other

hand, SDAs may also embody data parallelism and have their internal data structures mapped to

a set of processors. In the most general scenario, a task, and the SDA with which it is interacting,

will be executing on independent set of resources. Thus, the method arguments will have to be
communicated and remapped before the method code is executed. In this section, we discuss the

issues of handling distributed method arguments.

To illustrate the issues, let's consider the code excerpt in Figure 3, which declares an HPF
computation, main, on N processors, and an SDA, S, distributed on N processors. The task main

contains an array, A, that is distributed by BLOCK across the M processors. At some point, the

values from the distributed array A are used to update the SDA array, B, using the SDA method

put. Let us consider the issues that arise with different values of N and N.

If N and N are both greater than 1, then both main and S along with their data structures are

distributed. We will assume that main and S are each represented by a set of threads distributed

over the processors, and that each contains a master thread among the set, which is responsible

for external coordination of the thread group. To execute the put method, we have the following

options for transferring the data from A (the actual argument) to B (the formal argument):

1. The master thread from main collects the elements of A into a local scratch array, then sends it

to the master thread for S, which distributes the values among S's remaining threads, such that

each thread updates its portion of B. This provides the simplest solution in terms of scheduling
data transfers, since only one transfer occurs, from master thread of main to master thread

of S. However, two scratch arrays and two gather/scatter operations are required, consuming

both time and space.

2. The master thread from main collects the elements of A into a local scratch array, then
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negotiates with the master thread of S to determine how the scratch array is to be distributed

among the threads of S, taking B's distribution into account. After the negotiation, main's
master thread distributes the scratch array directly to S's threads. This approach eliminates

one scratch array and the scatter operation, but introduces a negotiation phase that is required

to discern B's distribution.

3. The master thread from main negotiates with the master thread of S, then informs the other

threads in main to send their portion of A to S's master thread. When the master thread from
S has received all of the messages and formed a local scratch array, the array is distributed
among the remaining threads in S. As with the previous scenario, this approach eliminates a
one scratch array and a gather operation at the expense of a negotiation phase.

4. The master thread from main negotiates with the master thread of S, then informs the other
threads in main to send their portion of A to the appropriate threads in S, according to the
distribution of B. This approach eliminates both scratch arrays and gather/scatter operations,
but requires all threads from S and main to understand each others array distribution.

This level of complexity in data structure management is necessary to accommodate the various

modules which comprise an Opus code, since each module will typically be developed independently
of the others and may view the same data in a different format or distribution. In addition to
remapping a data structure from one distribution to another, the SDA may be required to change

the dimensionality of a data structure or to filter the data using some predefined filter. The methods

outlined above will accommodate all of these requests.
The choice of which method to use will be dependent on various factors and may sometimes

be made statically at compile time. However, we presume that in most cases the negotiation will

occur at runtime and the choice made based on the current set of circumstances. We have started

an initial implementation of the above design and will experiment with the various choices in order
to characterize the overheads involved with each of them.

4 Related Research

Other language projects that focus on the integration of task and data parallelism include Fortran-

M (12, 13], DPC [30] and FX (31, 321. Fortran-M and DPC support mechanisms for establishing

message pathways between tasks, and all communication between the tasks is transmitted via these
pathways. Fortran-M uses the concept of "channels" (similar to a Unix pipe [1]) for establishing
its pathways, and DPC uses concepts similar to C file structures. In FX, tasks communicate only

through arguments at the time of creation and termination. In contrast, Opus allows communi-
cation between tasks in the form of SDAs, which are data structures that resemble C++ objects
with monitor-like semantics and conditions placed on method invocation.

Thread-based runtime support for parallel languages is common in the realm of shared memory

multiprocessors (2, 15, 23, 25, 26, 36]. One lightweight thread system for shared memory multi-
processors, pthreads++, supports the notion of ropes for data parallel execution of threads [33].

However, lightweight thread systems for distributed memory multiprocessors are far less common.
In addition to several application-specific runtime systems that support distributed memory threads

in a rather ad-hoc fashion [7, 16, 281, there are two systems which provide a general interface for
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lightweight threads capable of communication in a distributed memory environment: Nexus and
NewThreads. Nexus [14] supports a remote service request mechanism between threads, based
the asynchronous remote procedure call provided in Active Messages [341. However, standard
send/receive primitives are not directly supported, and the overhead required to provide this func-
tionality atop a remote service request mechanism is currently unknown. In addition, the cost of
selecting, Verifying, and calling the correct message handling routine without hardware and oper-
ating system support is expensive on most machines [29, 34]. Chant takes the opposite approach
by providing a basis for efficient point-to-point communication (using well-known libraries), on top
of which a remote service request mechanism is provided. NewThreads provides communication
between remote threads using a "ports" naming mechanism, where a port can be mapped onto any
thread, and thus requires a global name server to manage the unique port identifiers. Chant uses
a thread identifier that is relative to a given process and processor, thus eliminating the need for a
global name server for basic point-to-point communication, and also supports the POSIX standard
pthreads interface for the lightweight thread operations.

5 Conclusions

Opus extends the HPF standard to facilitate the integration of task and data parallelism. In
this paper we have provided an overview of the runtime system necessary to support the new
extensions on a variety of parallel and distributed systems. The runtime system is divided into a
language-dependent layer atop a language-independent layer. The language-dependent layer, called
Opus Ruittime, provides the functionality necessary for supporting tasks and SDAs. The language-
independent layer, called Chant, provides lightweight threads that support point-to-point communi-
cation, remote service requests, and remote thread operations in a distributed memory environment.
In addition, Chant provides a mechanism for grouping threads into collections called ropes for the
purpose of performing data parallel operations. Chant is built atop standard lightweight thread and
communication libraries, and adds relatively little overhead to either of these layers. In addition
to supporting Opus Runtime, Chant can provide support for other projects which can benefit from
the use of lightweight threads, such as distributed simulations and load balancing.

Preliminary experiments with various parts of the Opus runtime system indicate that the over-

head introduced by our design is fairly small. We are currently enhancing our prototype and will
report on the performance of Opus Runtime and Chant in future papers.
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